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A commutative noetherian ring R is said to have Serre dimension <_ t if every pro- 
jective R-module P of rank >__t+ 1 has a unimodular element, i.e. P = R p ~ ) P ' ,  for 
some p e P. 

Serre's classically well-known theorem asserts that the S e r r e d i m R < d i m R .  
As pointed out by Plumstead in [P], the Eisenbud-Evans theorem shows 
that S e r r e d i m R _ G e n e r a l i s e d d i m R .  This enabled him to prove that the 
Serre dim R [X] ___ dim R. 

Recently, S.M. Bhatwadekar and Amit Roy (see [1]) extended Plumstead's 
arguments to show that Serre dim R [ X  l, . . . ,  Xn] < d i m  R, thereby settling an old 
conjecture of Bass. In this note we present a different view point of  the analysis 'in 
the fourth corner ' ,  based on a combination of a theorem of Swan and a variant of  
a theorem of Roitman. 

The idea in [1] is to make the following proposition of Plumstead available in the 
present context; 

Plumstead's Patching Proposition [3, Proposition 1 of Section II]. Let B be any 
ring, A = B[Z], and P a projective A-module.  Let  p '  be an unimodular element o f  

P ( 'bar '  meaning 'modulo(Z) ' ) .  Let s be an element o f  B and T= 1 +sB. Let  Pl 

(resp. P2) be a unimodular element o f  P~ (resp. Pr) such that Pl =Ps (resp. P2 =PT-). 
Set N1 =P2/Asp l  and N 2 = p r / A r P 2  . Assume further that (Nl) r and )N2)s are ex- 
tended f r o m  Brs. Then p has a unimodular element p such that p = p ' .  

Let us give a brief sketch of  how they arranged to utilize this proposition in [1]; 
so as to pinpoint how the ' fourth corner' (Brs[Z] in the above proposition) looks. 

Take a projective R [ X I , . . . ,  Xn]-module P of rank >_d+ 1, where d = dim R. One 
asserts that it has a unimodular element lifting any given one 'modulo (Xl , . . . ,  An)' 
by induction on the pair (d, n). The validity of Serre's conjecture and Plumstead's 
theorem enable us to start the induction and assume d _  1, n > 1. 

Fix a unimodular element Po of  P / X n P .  Choose s e R  s.t. Ps is free; and select 
a unimodular element los-(Po)s (mod(X,P)) .  
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By induction, P/SXnP has a unimodular element /L The Eisenbud-Evans 
theorem permits us to choose a lift p '  of/~ with ht O(p ' )>d+ 1. Let ge  O(p') with 
g -  1 (mod(s)). 

A suitable change of  variables Xi~,X.~(for 1 < i < n -  1), Xn~Xn ,  forces O(p') to 
have a monic polynomial f in X,, with its coefficients in R[X(, . . . ,  X,:_ l] ( = B '  say). 
Let T=  1 + sB', A = T-1B'[Xn]. 

Since h=Resul tant ( f ,g )~O(p ' )NT-IB ', and h - I  (rood(s)), p~. is unimodular 
in Pr- 

An easy diagram (see below) chase, aided by the double induction and that 
V(sXn) = V(s)O V(Xn), enables one to exhibit a unimodular element P r  ~ Pr lifting 

Po. 
A 

a/(s) A/(xn) 

/sXn) 

A /(s, 

Let P r  =Apr(~N" To make Plumstead's patching proposition available, we only 
need to show that Ns is extended from B~. s. The object of this note is to prove 
this. (In [1], they had to arrange Pr suitably to infer, by a deep theorem of 
QuiUen-Suslin, that its cokernel became extended after inverting s.) 

We observe that, 
(1) N s is stably free of  rank _>d, by the very choice of s. 
(2) As=B~.s[X n] is a localisation of (R(I +sR)s[X~, ..., X~_ l])[Xn] at the muliplica- 

tively closed subset T of  the base ring. 
Note that dim R 0 +sR)s <_d- 1. 
We conclude that Ns is extended from B~s by applying the following proposition. 

Proposition 1. Let B=R[XI,  ..., Xm], with dim R =d. Let S be a multiplicatively 
closed subset o f  B. Then any stably extended S-1B[Z]-projective module o f  rank 
>_ d + 1 is extended from S-  l B. 

Proof.  By Quillen's localisation principle [4, 4.15.4] we need show that every stably 
free (S-IB)[Z]-module is free, for every p e Spec S-lB. 

We may safely assume that the projective module is defined by a unimodular row 
w(Z)=(wl(Z),  ..., wt+l(Z)), t>_d. 

Since Slt+l(Rp)=Et+l(Rp), and elementary matrices can be lifted, we may 
assume w(0) = (1, 0, . . . ,  0). 
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Let w(Z) =(1 + Zwl(Z), Zw2(Z) ,  . . . ,  ZWt+l(Z)) ,  for some w:(Z) eR[Z], 1 < 

i< t+l .  
Let w~(Z)eRs[Z], for some s ¢  ~. Put  w~(Z)= wT(Z)/s m, for some wT(Z)~ R[Z], 

m~_O. 
Let Z '  = Z / s  m + 1. Then 

w,"+ 
w ( Z ) =  I + s Z  sm+-"---~,sZ sm+------~,...,sZ srn+ 1 

" m . . . ,  ~ " (sm+l =(1 +sZ wl(s +IZ'),sZ'w~'(sm+~z'), sZ wt+ Z')). 

The last row (call it w'(Z')) is actually unimodular  when regarded as a row over 
B[Z']. This is because it has an element I+sZ'w~'(sm+Iz')=-I (mod(s)), and is 
unimodular  af ter  inverting s. 

By [6, Theorem 1.1], there exists a o- 'e GI t + z(R [Z']) s.t. cr'w' = (1, 0, . . . ,  0) = w'(0). 
Changing  back to our  original variables, we have a aeGlt+l(Rs[Z]) with 

crw = (1,  0, . . . ,  0) .  

Remark 1. One may  imitate the above proof  to show the following variant  of  a 
theorem of  Roi tman [5, Proposi t ion 2]. 

Proposition 2. Let S be a multiplicatively closed subset of  R. Assume that every 
stably free projective R[Z]-module o f  rank >_t is extended from R. Then every 
stably extended projective S-  IR[Z]-module of  rank > t is extended from S-1R. 

Remark 2. The above analysis in the fourth corner was worked out when n > 1. A 
corresponding approach  may be presented when n = 1. The ring in the fourth corner 
is Brs[Z], where T =  1 + sR, s being chosen to that Ps is free. One then has two 
unimodular  vectors u, w in Psr 'sitting above'  a given unimodular  vector in 

Psr/(Z). It suffices to find a a~Gd+l(Rsr[Z]) with au=w. 
If  d im R =  1, then (Rsr)re d is a product of  fields, and this is obvious. Let 

d = d i m R >  1. 
Then l~p ~ SpecRsr, (Rsr)p[Z] has generalised dimension _<d-1  by [3, Section 

1, Example  4]. 
Consequently,  by the Eisenbud-Evan 's  theorem, there exists ~ ,  ZDe 

Gd+ l((Rsr)v[Z] s.t. a~u = u(0), Zpw = w(O). 
A cute theorem of  Vasertein (see [2, p. 87, Theorem 25]) now says that  there exists 

a, re  Ga+n(RsrIZ]) s.t. a u = u ( 0 ) ,  and r (w)= w(0). 
Since u(0)= w(0), r - lcr  maps u to w. 
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