A NOTE ON THE SERRE DIMENSION OF POLYNOMIAL RINGS

Ravi RAO
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 , India

Communicated by H. Bass
Received 17 March 1983

A commutative noetherian ring R is said to have Serre dimension $\leq t$ if every projective R-module P of rank $\geq t+1$ has a unimodular element, i.e. $P=R p \oplus P^{\prime}$, for some $p \in P$.

Serre's classically well-known theorem asserts that the $\operatorname{Serre} \operatorname{dim} R \leq \operatorname{dim} R$. As pointed out by Plumstead in $[P]$, the Eisenbud-Evans theorem shows that $\operatorname{Serre} \operatorname{dim} R \leq G e n e r a l i s e d \operatorname{dim} R$. This enabled him to prove that the Serre $\operatorname{dim} R[X] \leq \operatorname{dim} R$.

Recently, S.M. Bhatwadekar and Amit Roy (see [1]) extended Plumstead's arguments to show that $\operatorname{Serre} \operatorname{dim} R\left[X_{1}, \ldots, X_{n}\right] \leq \operatorname{dim} R$, thereby settling an old conjecture of Bass. In this note we present a different view point of the analysis 'in the fourth corner', based on a combination of a theorem of Swan and a variant of a theorem of Roitman.

The idea in [1] is to make the following proposition of Plumstead available in the present context;

Plumstead's Patching Proposition [3, Proposition 1 of Section II]. Let Be any ring, $A=B[Z]$, and P a projective A-module. Let p^{\prime} be an unimodular element of \bar{P} ('bar' meaning 'modulo(Z)'). Let s be an element of B and $T=1+s B$. Let p_{1} (resp. p_{2}) be a unimodular element of $P_{s}\left(r e s p . P_{T}\right)$ such that $\bar{p}_{1}=p_{s}^{\prime}\left(r e s p . \bar{p}_{2}=p_{T}^{\prime}\right)$. Set $N_{1}=P_{2} / A_{s} p_{1}$ and $N_{2}=p_{T} / A_{T} p_{2}$. Assume further that $\left(N_{1}\right)_{T}$ and $\left.) N_{2}\right)_{s}$ are extended from $B_{T s}$. Then p has a unimodular element p such that $\bar{p}=p^{\prime}$.

Let us give a brief sketch of how they arranged to utilize this proposition in [1]; so as to pinpoint how the 'fourth corner' ($B_{T s}[Z]$ in the above proposition) looks.

Take a projective $R\left[X_{1}, \ldots, X_{n}\right]$-module P of rank $\geq d+1$, where $d=\operatorname{dim} R$. One asserts that it has a unimodular element lifting any given one 'modulo (X_{1}, \ldots, X_{n})' by induction on the pair (d, n). The validity of Serre's conjecture and Plumstead's theorem enable us to start the induction and assume $d \geq 1, n>1$.

Fix a unimodular element p_{0} of $P / X_{n} P$. Choose $s \in R$ s.t. P_{s} is free; and select a unimodular element $p_{s} \equiv\left(p_{0}\right)_{s}\left(\bmod \left(X_{n} P\right)\right)$.

By induction, $P / s X_{n} P$ has a unimodular element \tilde{p}. The Eisenbud-Evans theorem permits us to choose a lift p^{\prime} of \tilde{p} with ht $O\left(p^{\prime}\right)>d+1$. Let $g \in O\left(p^{\prime}\right)$ with $g \equiv 1(\bmod (s))$.

A suitable change of variables $X_{i} \mapsto X_{i}^{\prime}($ for $1<i<n-1), X_{n} \mapsto X_{n}$, forces $O\left(p^{\prime}\right)$ to have a monic polynomial f in X_{n} with its coefficients in $R\left[X_{1}^{\prime}, \ldots, X_{n-1}^{\prime}\right]$ ($=B^{\prime}$ say). Let $T=1+s B^{\prime}, A=T^{-1} B^{\prime}\left[X_{n}\right]$.

Since $h=\operatorname{Resultant}(f, g) \in O\left(p^{\prime}\right) \cap T^{-1} B^{\prime}$, and $h \equiv 1(\bmod (s)), p_{T}^{\prime}$ is unimodular in P_{T}.

An easy diagram (see below) chase, aided by the double induction and that $V\left(s X_{n}\right)=V(s) \cup V\left(X_{n}\right)$, enables one to exhibit a unimodular element $p_{T} \in \dot{P}_{T}$ lifting p_{0}.

Let $P_{T}=A_{p_{T}} \oplus N$. To make Plumstead's patching proposition available, we only need to show that N_{s} is extended from $B_{T_{s}}^{\prime}$. The object of this note is to prove this. (In [1], they had to arrange p_{T} suitably to infer, by a deep theorem of Quillen-Suslin, that its cokernel became extended after inverting s.)

We observe that,
(1) N_{s} is stably free of rank $\geq d$, by the very choice of s.
(2) $A_{s}=B_{T s}^{\prime}\left[X_{n}\right]$ is a localisation of $\left(R_{(1+s R) s}\left[X_{1}^{\prime}, \ldots, X_{n-1}^{\prime}\right]\right)\left[X_{n}\right]$ at the muliplicatively closed subset T of the base ring.

Note that $\operatorname{dim} R_{(1+s R) s} \leq d-1$.
We conclude that N_{s} is extended from $B_{T s}^{\prime}$ by applying the following proposition.

Proposition 1. Let $B=R\left[X_{1}, \ldots, X_{m}\right]$, with $\operatorname{dim} R=d$. Let S be a multiplicatively closed subset of B. Then any stably extended $S^{-1} B[Z]$-projective module of rank $\geq d+1$ is extended from $S^{-1} B$.

Proof. By Quillen's localisation principle [4, 4.15.4] we need show that every stably free $\left(S^{-1} B\right)[Z]$-module is free, for every $p \in \operatorname{Spec} S^{-1} B$.

We may safely assume that the projective module is defined by a unimodular row $w(Z)=\left(w_{1}(Z), \ldots, w_{t+1}(Z)\right), t \geq d$.

Since $\mathrm{Sl}_{t+1}\left(R_{\mathfrak{p}}\right)=\mathrm{E}_{t+1}\left(R_{\mathfrak{p}}\right)$, and elementary matrices can be lifted, we may assume $w(0)=(1,0, \ldots, 0)$.

Let $w(Z)=\left(1+Z w_{1}^{\prime}(Z), Z w_{2}^{\prime}(Z), \ldots, Z w_{t+1}^{\prime}(Z)\right)$, for some $w_{i}^{\prime}(Z) \in R[Z], \quad 1 \leq$ $i \leq t+1$.

Let $w_{i}^{\prime}(Z) \in R_{s}[Z]$, for some $s \notin p$. Put $w_{i}^{\prime}(Z)=w_{i}^{\prime \prime}(Z) / s^{m}$, for some $w_{i}^{\prime \prime}(Z) \in R[Z]$, $m \geq 0$.

Let $Z^{\prime}=Z / s^{m+1}$. Then

$$
\begin{aligned}
w(Z) & =\left(1+s Z \frac{w_{1}^{\prime \prime}(Z)}{s^{m+1}}, s Z \frac{w_{2}^{\prime \prime}(Z)}{s^{m+1}}, \ldots, s Z \frac{w_{t+1}^{\prime \prime}(Z)}{s^{m+1}}\right) \\
& =\left(1+s Z^{\prime} w_{1}^{\prime \prime}\left(s^{m+1} Z^{\prime}\right), s Z^{\prime} w_{2}^{\prime \prime}\left(s^{m+1} Z^{\prime}\right), \ldots, s Z^{\prime} w_{t+1}^{\prime \prime}\left(s^{m+1} Z^{\prime}\right)\right)
\end{aligned}
$$

The last row (call it $w^{\prime}\left(Z^{\prime}\right)$) is actually unimodular when regarded as a row over $B\left[Z^{\prime}\right]$. This is because it has an element $1+s Z^{\prime} w_{1}^{\prime \prime}\left(s^{m+1} Z^{\prime}\right) \equiv 1(\bmod (s))$, and is unimodular after inverting s.

By [6, Theorem 1.1], there exists a $\sigma^{\prime} \in \mathrm{Gl}_{t+1}\left(R\left[Z^{\prime}\right]\right)$ s.t. $\sigma^{\prime} w^{\prime}=(1,0, \ldots, 0)=w^{\prime}(0)$.
Changing back to our original variables, we have a $\sigma \in \mathrm{Gl}_{t+1}\left(R_{s}[Z]\right)$ with $\sigma w=(1,0, \ldots, 0)$.

Remark 1. One may imitate the above proof to show the following variant of a theorem of Roitman [5, Proposition 2].

Proposition 2. Let S be a multiplicatively closed subset of R. Assume that every stably free projective $R[Z]$-module of rank $\geq t$ is extended from R. Then every stably extended projective $S^{-1} R[Z]$-module of rank $\geq t$ is extended from $S^{-1} R$.

Remark 2. The above analysis in the fourth corner was worked out when $n>1$. A corresponding approach may be presented when $n=1$. The ring in the fourth corner is $B_{T s}[Z]$, where $T=1+s R, s$ being chosen to that P_{s} is free. One then has two unimodular vectors u, w in $P_{s T}$ 'sitting above' a given unimodular vector in $P_{s T} /(Z)$. It suffices to find a $\alpha \in G_{d+1}\left(R_{s T}[Z]\right)$ with $\alpha u=w$.

If $\operatorname{dim} R=1$, then $\left(R_{s T}\right)_{\text {red }}$ is a product of fields, and this is obvious. Let $d=\operatorname{dim} R>1$.

Then $\forall \mathrm{p} \in \operatorname{Spec} R_{s T},\left(R_{s T}\right)_{\mathrm{p}}[Z]$ has generalised dimension $\leq d-1$ by [3, Section 1, Example 4].

Consequently, by the Eisenbud-Evan's theorem, there exists $\delta_{\mathrm{p}}, Z_{\mathfrak{p}} \in$ $G_{d+1}\left(\left(R_{s T}\right)_{\mathrm{p}}[Z]\right.$ s.t. $\sigma_{\mathrm{p}} u=u(0), Z_{\mathrm{p}} w=w(0)$.

A cute theorem of Vasertein (see [2, p. 87, Theorem 25]) now says that there exists $\sigma, \tau \in G_{d+1}\left(R_{s T}[Z]\right)$ s.t. $\sigma u=u(0)$, and $\tau(w)=w(0)$.

Since $u(0)=w(0), \tau^{-1} \sigma$ maps u to w.

References

[1] S.M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1983).
[2] T.Y. Lam, Serre's conjecture, Lecture Notes in Math. 635 (Springer, Berlin, 1978).
[3] B.R. Plumstead, The Conjectures of Eisenbud and Evans, Ph.D. Thesis (1979), Amer. J. Math. 10: (1983) 1417-1433.
[4] D. Quillen, Projective modules over polynomial rings, Inventiones Math. 36 (1976) 167-171.
[5] M. Roitman, On projective modules over polynomial rings, J. Algebra 58 (1979) 51-63.
[6] R.G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978) 111-120.

